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From its pole-to-pole orbit, the Juno spacecraft discovered arrays
of cyclonic vortices in polygonal patterns around the poles of Ju-
piter. In the north, there are eight vortices around a central vortex,
and in the south there are five. The patterns and the individual
vortices that define them have been stable since August 2016. The
azimuthal velocity profile vs. radius has been measured, but ver-
tical structure is unknown. Here, we ask, what repulsive mechanism
prevents the vortices from merging, given that cyclones drift pole-
ward in atmospheres of rotating planets like Earth? What atmo-
spheric properties distinguish Jupiter from Saturn, which has only
one cyclone at each pole? We model the vortices using the shallow
water equations, which describe a single layer of fluid that moves
horizontally and has a free surface that moves up and down in
response to fluid convergence and divergence. We find that the
stability of the pattern depends mostly on shielding—an anticy-
clonic ring around each cyclone, but also on the depth. Too little
shielding and small depth lead to merging and loss of the polygonal
pattern. Too much shielding causes the cyclonic and anticyclonic
parts of the vortices to fly apart. The stable polygons exist in be-
tween. Why Jupiter’s vortices occupy this middle range is unknown.
The budget—how the vortices appear and disappear—is also un-
known, since no changes, except for an intruder that visited the
south pole briefly, have occurred at either pole since Juno arrived
at Jupiter in 2016.

Jupiter | vortex dynamics | Juno | shallow water model

With its unique pole-to-pole orbit, the Juno spacecraft was
the first to view the geometric patterns of vortices at the

poles of Jupiter. The spacecraft carries two imaging systems,
JunoCam (1), a visible-light camera with broadband red, green,
and blue filters, and JIRAM (2), the Jovian Infrared Auroral
Mapper, whose imaging channel operates at 4.8-μm wavelength.
The spatial resolution over the pole is 50 km/pixel for JunoCam
and 12 km/pixel for JIRAM (3, 4). JunoCam is sensitive to the
colors and composition of the clouds, which are broadly dis-
tributed from 0.3 to 0.7 bars, and JIRAM is sensitive to holes in
the clouds, which allow radiation from warmer levels at pressures
up to 5 bars to reach the detector.
Fig. 1 shows views of the south pole by JunoCam and JIRAM.

The figure shows five cyclonic vortices surrounding a central cy-
clonic vortex. At the north pole, there are eight cyclonic vortices
surrounding a central cyclonic vortex. JunoCam is restricted to the
sunlit side of the planet. The vortices last from one orbit to the
next, 53 d later (5), so a visible-light mosaic of the entire polar
region can be constructed from several orbital passes. JIRAM is
sensitive to thermal emission from the planet and can view the
entire pole during a single orbital pass.
Based on cloud markings, the cyclones’ radii range from 2,000

to 3,500 km (4). Their centers are at latitudes of ±83°, about
8,700 km from the respective poles. Based on azimuthal velocities,
the cyclones’ radii are ∼1,000 km, i.e., the annulus of maximum
wind is located ∼1,000 km from the vortex centers, with peak
speeds of 70 to 90 m·s−1 (4). Outside the peak, the wind profile

falls off faster than the 1/r dependence of a vortex patch sur-
rounded by a region with zero vorticity—suggesting anticyclonic
vorticity surrounding the cyclones. In other words, the cyclonic
vortices are “shielded.” Shielding may explain the slow rotation
(1.5° westward) of the structure as a whole during the 53 d of one
orbit (5).
On Earth, cyclones drift poleward (6, 7), but they dissipate

over land and cold ocean. Jupiter has neither land nor ocean, so
the question is, why do cyclones neither accumulate at the poles
nor merge? Saturn has only one cyclone, and it is surrounded by
a sea of smaller anticyclones (8). Several theories (9–11) seem to
account for the formation, poleward drift, and merging of cy-
clones on Saturn. Those models are constantly forced by small-
scale short-lived processes that represent the effects of moist
convection, but they do not produce polygonal patterns like
those on Jupiter. In contrast, we initialize our calculations with
fully formed polar cyclones arranged in polygonal patterns and
we investigate their stability. We ask, what values of the input
parameters lead to stable polygons on Jupiter as opposed to
mergers transforming into one cyclone at each pole?
We model the vortices using the shallow water (SW) equations,

which describe a single layer of fluid on a rotating sphere. It has
nonlinear horizontal advection, planetary rotation, and an upper
surface that moves up and down in response to convergence and
divergence of the horizontal wind. Variations in the height of the
upper surface produce the pressure gradients that accelerate the
winds. The single layer rests hydrostatically on a much deeper isen-
tropic layer at rest, and the system is the well-studied, reduced-gravity,
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or 1 1 =2 layer model (12, 13). Without rotation or convergence/di-
vergence, the SW equations reduce to the two-dimensional
(2D) Euler equations, which yield the barotropic vorticity
equation and the 1/r falloff of velocity (Green’s function) from
a point vortex (14, 15). For large-scale, slowly varying flows in a
rotating system, the Coriolis term is the dominant acceleration,
as measured by the smallness of the Rossby number. Rotation
and horizontal convergence/divergence add an intrinsic length
scale, the radius of deformation Ld, which changes the falloff of
velocity to the modified Bessel function K1 (16, 17). The
equations are known as the equivalent barotropic system. On a
sphere, the decrease in the angle between the planet’s rotation
vector and the vertical unit vector as the latitude increases
means that the total vorticity increases—becomes more cy-
clonic with latitude. The change of vorticity is called “beta,”
and it causes cyclonic vortices to drift poleward and westward,
often referred to as beta drift. Drifting vortices in the presence
of a background vorticity gradient have been studied in rotating
tank experiments (18), in atmospheres and oceans (19), and in
ideal analytical settings (20, 21). Even on a sphere, beta drift
does not occur if the ambient vorticity is irrotational (22). In
other words, beta drift requires a vorticity gradient.
The interaction between vortices dates back to the 19th cen-

tury and Kelvin’s proof that a polygon of N identical point vor-
tices arrayed symmetrically in a circle is stable only for N < 7
(23). However, adding a strong enough central vortex can sta-
bilize a polygon consisting of arbitrarily many vortices (16, 24,
25). Single shielded vortices, i.e., vortices with v = 0 outside a
certain radius, have various modes of instability (26), and they
often break into tripoles (27), consisting of a central vortex of
one sign and two satellite vortices of the opposite sign orbiting
180° apart. Tripoles are stable both in the barotropic and
equivalent barotropic system (17, 28). Vortex crystals, in which
many small vortices in random patterns spontaneously merge
into geometric patterns of much larger vortices, are seen in
laboratory experiments (14) and numerical simulations using the
2D Euler equations (29, 30). However, the 2D Euler equations
do not have horizontal divergence, and they do not have a beta
effect. Seeing how these additional parameters might apply in
Jupiter’s atmosphere is an important part of this paper.
For adiabatic inviscid flow on a rotating sphere, fluid elements

conserve a quantity called potential vorticity (PV). For the
shallow water equations, PV is (ζ + f )=h, where ζ = (∇ × v) · k̂ is
the relative vorticity—the vertical component of the curl of the
horizontal velocity, f = 2Ωcos θ is the planetary vorticity—the

vertical component due to the planet’s rotation, Ω is the angular
velocity of the planet, θ is colatitude, and h is the instantaneous
depth of the fluid. The Rossby number Ro is V=(fL), where V
and L are a characteristic velocity and horizontal length scale,
respectively. Taking the 80 m·s−1 maximum velocity and the
1,000-km radius (4) of the vortices for V and L, one finds Ro =
0.23 when f = 2Ω. The ratio ζ=f is exactly twice this value. The
quasi-geostrophic (QG) approximation is based on Ro ≪ 1 (31,
32), but the SW equations do not make this assumption. All of
those aforementioned subsystems—QG, 2D Euler, point
vortices—are limiting cases of the SW system.
The depth h is a measure of the stratification and is highly

uncertain. Here, we use ϕ = gh as one of the two dependent
variables, the other being the horizontal velocity v. The gravity
wave speed c is √ϕ, and the radius of deformation Ld is c=f . For
a thin layer of fluid floating hydrostatically on a much deeper
layer, ϕ is gh multiplied by the fractional density difference be-
tween the two layers (12, 13). If c is independent of latitude, Ld
will vary as 1=cos(θ). The corresponding estimates of Ld at the
poles range from 350 km if the static stability is related to the
difference between the dry and moist adiabatic lapse rates for a
solar composition atmosphere and ∼700 km if the water abun-
dance is 4× solar (33), to 700 to 1,000 km from vortex models
and observations (34), to ∼1,300 km from waves radiating from
the Shoemaker-Levy impacts (35). This means the Burger
number, Bu = ϕ0=(fL)2 = L2

d=L
2, could range from ∼0.12 to ∼1.7

based on the vortex radius of 1,000 km for L. In most cases, the
lower part of this range (Bu < 0.46) cannot be reached because
the depression of the upper surface at the center of the vortex is
greater than the undisturbed depth, and the layer thickness goes
to zero. Using a different value for L does not change our overall
conclusion because the Rossby will also change proportionally,
which cancels the effect.
In addition to the Rossby number and the Burger number, a

third independent variable is θ, the initial colatitude of the vor-
tices. It determines the value of β = −∂f=∂θ=RJ ≈ 2Ωθ=RJ near
the pole, where RJ is the radius of Jupiter. Note that β = 0 at the
pole. The dimensionless number that gives the importance of β is
βL2=V. It compares β to the vorticity gradient associated with
fluid motions, where L is the vortex radius as before. We take
θ = Lp=RJ, where Lp is the 8,700-km distance from the pole to
the vortices, which are at 83° latitude. If Ro = V=(fL) = 0.23, we
obtain βL2=V = LLp=R2

J=Ro = 0.0074. It is a small number,
about 10% of the midlatitude QG scaling, which lacks the Lp=RJ
factor in the traditional β-plane approximation (31, 32), but it is

Fig. 1. South pole of Jupiter imaged by JunoCam (Left) and JIRAM (Right). The circle in each image is at latitude −80°. The five vortices at the vertices of the
pentagon and the sixth vortex at the center are cyclones whose clockwise circulation is measured directly by tracking small clouds in sequences of images and
inferred indirectly by the spiral tails trailing behind the general rotation. Clouds look bright in the JunoCam image, but they look dark in the JIRAM image
because they are colder than the atmosphere below (3). Reprinted by permission from ref. 3, Springer Nature: Nature, copyright (2018).
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the precise reason why cyclonic vorticity is accumulated at the
pole and why it may be offset by the vortex shielding resulted
from the shape of the azimuthal wind profile.
The fourth independent variable comes from the initial ve-

locity profile. Tropical cyclones on Earth either merge, drift
apart, or orbit each other depending on their shielding (36–38).
A simple expression for azimuthal velocity vs. radius, with a
single parameter b that controls the amount of shielding, is as
follows (37):

v(r) = vm( r
rm
)exp{1

b
[1 − ( r

rm
)b]}. [1]

In some papers, b is known as the steepness parameter (28, 39)
and is denoted by α. The azimuthal velocity profile has a single
peak at r = rm, reaching the velocity v = vm. Fig. 2 shows dimen-
sionless PV profiles for three different values of b and the back-
ground atmosphere at rest with the pole placed at r = 0,
PV = (ζ + f )=ϕ, and

ζ(r) = ∂v
∂r

+ v
r
,ϕ(r) = ϕ0 − ∫ ∞

r [v2r + fv]dr. [2]

In setting the initial conditions, we assume f ≈ 2Ω, in which
case the integral can be done analytically using incomplete
gamma functions. Velocity has been scaled by vm, radial dis-
tance by rm, and PV by 2Ω=ϕ0. The dimensionless planetary PV,
shown by the dashed curve in Fig. 2, is cos(θ). The vortices are
northern hemisphere cyclones, which means they spin counter-
clockwise as viewed from above. Relative vorticity is zero at
infinity and is cyclonic (anticyclonic) where PV is greater than
(less than) the value at infinity. The profiles with the larger
values of b have shielding, i.e., anticyclonic relative vorticity
surrounding the central cyclone. As calculated in SI Appendix,
shielding always occur for profiles with b> 1, although it is neg-
ligible when b is small.
In the presence of beta, a shielded cyclone may create a local

maximum of PV outside of its annular shielding, and two cyclones
can either attract or repel depending on their relative positions.

Consider two cyclones, the first one is at rest, and the second one,
an infinitely small test cyclone, moves under the influence of
the first one. The test cyclone can be at three places: 1) inside
of the radius of PV minimum, 2) outside of the radius of
minimum PV but inside of the radius of local PV maximum,
and 3) outside of the radius of local PV maximum, depicted
respectively in Fig. 2. At positions 1 and 3, because the local PV
gradient points to the center, the test cyclone will drift toward
the center, displaying the attraction between vortices. Particu-
larly, if the test cyclone is at position 1, mutual attraction will
eventually lead to merging. However, at position 2, the local PV
gradient points outward, and so the test cyclone will move away
from the center as if it is repelled. Thus, the equilibrium po-
sition of the test cyclone is at the radius of PV maximum be-
tween 2 and 3 and the boundary between mergence and
separation is at the radius of PV minimum between 1 and 3.
This is the result of a cyclone climbing up the vorticity gradient
of the other (37, 38), which is the same process that makes
tropical cyclones drift poleward and westward on Earth. Here,
the mechanism of stability involves the interaction between the
beta drift and the shielding, which is different from the inter-
action of two isolated vortices without beta (15).
Next, we will show, in our SW experiments, that shielded

cyclones form stable polygons in a balance between the
poleward drift due to the planetary beta effect and the re-
pulsive drift due to the local PV gradient induced by other
vortices. We find that the radius of PV minimum delineates
the stability boundary very well as reasoned in the previous
paragraph.

Results
Fig. 3 shows our determination of b obtained by fitting the
function v(r) in Eq. 1 to the observed velocity profiles in
figure 6 A and B of ref. 4. We use the WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/) to digitize the fig-
ures. The result is b ≈ 1.5 ± 0.2. Values of 1.0 and 2.0 for b are
decidedly out of range, and the 0.2 uncertainty is an eyeball
estimate. Nevertheless, we shall see that the observed velocity
profile confirms that the Jovian vortices may be shielded to
some extent.
Fig. 4 is a series of six frames from Movie S1 that shows a

configuration like that at the south pole of Jupiter—five cyclones
circling a cyclone at the pole, and an intruder. The simulation is

A B C

Fig. 2. Dimensionless potential vorticity (PV) profiles for different values of
the steepness parameter b and three regions, A, B, and C, marked for the PV
profile with b = 1.3 (for details, see the text). Larger values of b produce an
annular band where the PV is less than the value at far-field and a local PV
maximum outward. This annular band has anticyclonic vorticity, and it sur-
rounds the central cyclone. The dimensionless planetary PV of an atmo-
sphere at rest is plotted in the red dashed line with the pole at r = 0. The
Rossby number Ro = 0.2 and the Burger number Bu = 1 are used for all of
these profiles.

Fig. 3. Fitting to the observed velocity profiles of Jovian polar vortices.
Black step: averaged velocity profiles of north polar cyclones (right half) and
south polar cyclones (left half). Dashed, solid, and dash-dotted lines: velocity
profiles given by b = 1, b = 1.5, and b = 2 in Eq. 1, respectively. The radius of
the north polar cyclones (rm) are 1,000 km, and the radius of the south polar
cyclones are 1,200 km.
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for the northern hemisphere, so the cyclones spin counterclock-
wise. The cyclones are identical to each other and have dimen-
sions and speeds taken from observation (4, 5). The value of b is
1.5, in agreement with our estimate based on the observations in
Fig. 3, Ro is 0.23, and Bu is 10. The shading in the figure is PV,
with cyclonic regions bright and anticyclonic regions dark. The
vortices are initially at 83° latitude. Since PV is a conserved tracer,
it accurately shows the motion of fluid elements. Movie S1 shows
the relatively rapid azimuthal motion around each cyclone and the
much slower motion of the intruder toward the pole. This differ-
ence in speeds is consistent with β going to zero at the pole. The
movie and the six frames of Fig. 4 show the intruder circling
clockwise around the ring as if it were trying to get in, until it
succeeds and turns the pentagon into a hexagon. The hexagon
lasts for the length of the integration, 500 simulated days. Having
an intruder in Fig. 4 is based on observation: Around Perijove 13,
a cyclone from outside the south polar pentagon pushed into the
structure, temporarily making it a hexagon, but the intruder was
soon pushed out (40).
Fig. 5 is the same as Fig. 4 except there is no intruder and

the initial velocity profile of each cyclone has b = 1 and Bu = 2.
These vortices are only marginally shielded according to
Fig. 2. Movie S2 shows the central cyclone spiraling outward in

a clockwise direction, increasing its distance from the pole
until it reaches the cyclones that form the pentagon and
merges with one of them. This spiraling is an instability of the
structure and is not just a merger of a cyclone pair. The new
combined cyclone merges with another cyclone, and the
mergers continue. Other movies in SI Appendix show a series
with Bu = 1 and several values of b. For b = 1.5 (Movie S3),
the pentagon contracts by about 3.7% and equilibrates at 83.3°
latitude, agreeing even better to the observed positions of the
cyclones (3). The central vortex begins spiraling, but the
structure is stable. For b = 2.25 (Movie S4), 3.00 (Movie S5),
and 3.75 (Movie S6), the pentagonal structure remains but the
shielded cyclones turn into tripoles. The contraction of the
structure slightly increases with the increase of b by up to 7%.
Cases with Bu = 10 and the same values of b are essentially the
same, although for b = 3 (Movie S7) the vortices collide during
the contraction phase and the satellites lose a large fraction of
their original material. Some of that is reabsorbed and some of
it drifts away. However, the cases b = 4 and Bu = 2 (Movie S8)
and 5 (Movie S9) are different—the tripoles disintegrate and
the remnants of the shields, because they are anticyclonic,
drift off to lower latitudes and the polygonal structure is
destroyed.
Fig. 6 shows a summary of SW results in the b-Bu plane. Each

point is a movie listed in SI Appendix, summarized in SI Ap-
pendix, Table S1, and the symbols are as follows: 1) unshielded

Fig. 4. Frames from Movie S1 with Burger number Bu = 10, steepness pa-
rameter b = 1.5, Rossby number Ro = 0.23, and initial polygon vertexes at 83°
latitude. The intruder is initially at 70°, but it drifts poleward and westward
under the influence of beta effect. Time is given in each frame in units
of days.

Fig. 5. Similar to Fig. 4, except Bu = 2, b = 1 (Movie S2), and there is
no intruder.
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vortices that merge, 2) shielded vortices that retain their polyg-
onal pattern and their axisymmetric shields, 3) shielded vortices
that turn into tripoles but retain their polygonal pattern, 4)
shielded vortices whose tripoles partly disintegrate although the
polygonal pattern remains, and 5) tripoles that disintegrate such
that the polygonal pattern is lost. The contour lines in Fig. 6 give
the radii where PV has its minimum value (Fig. 2). A minimum-
PV radius of 4.5 cleanly divides the boundary between regions 1
and 2. That line is a better fit than a single value of b, and reflects
the influence of Bu on the results. The stability boundary r = 4.5 is
slightly larger than the minimum-PV radius shown in Fig. 2 for
b = 1.3 probably due to the finite size of the vortices. The vortices
in Fig. 5, with b = 1 and Bu = 2, lie just below the line, consistent
with the observed merging. A minimum-PV radius of 2.2 divides
regions 2 and 3. The boundary between regions 3 and 4 does not
coincide with a minimum-PV radius. For b = 3 and b = 4, it seems
to lie between Bu = 1 and Bu = 10, with the former more stable

than the latter. This could have more to do with pattern con-
traction and vortex collisions than with tripole stability.
The limit Bu→∞ corresponds to infinite radius of deformation,

where the flow becomes 2D and incompressible. A 2D incompressible
numerical model (28, 39), which is the same as the 2D Euler
equations, says that the transition from axisymmetric shielded
cyclones to tripoles occurs at b = 1.85, which agrees with the
points at large Bu in Fig. 6. That numerical model (28) says that
the tripoles disintegrate above b = 4, which also agrees with
Fig. 6. The observed value b = 1.5 ± 0.2 agrees with the SW re-
sults in Fig. 6 in that it is located in region 2 where polygons are
stable and the vortices do not have tripoles.

Discussion
We have investigated the stability of polygonal patterns of polar
cyclones on Jupiter, and we have shown that the polygons most
likely owe their stable structure to shielding. Vortices in polygonal
patterns is an old subject, but the complications of beta drift and
polar geometry are new. There are many questions we have not
answered. We have not explored how the cyclones form—whether
they form in place or drift up from lower latitudes. Additionally, we
have not explained how a steady state is maintained—why the
number of cyclones does not increase with time. Furthermore, we
have not determined how shielding develops, or why only the Jo-
vian vortices are shielded. We have not varied the Rossby number
because it is constrained by observation. Moreover, at the poles, the
limit Ro→ 0 has a singular effect on the importance of beta. Finally,
we have not explored 3D effects and thermal structure except to
postulate that there is a finite radius of deformation. Its value is
currently uncertain, but further measurement of the physical
properties and time evolution may help place the Jovian vortices
more precisely in the SW parameter space.

Data Availability. All movies, codes, and data used to generate
figures and tables in the paper have been deposited in GitHub
(https://github.com/chengcli/2020.JupiterPolarVortex). All study
data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. This research was carried out at the California
Institute of Technology under a contract with the National Aeronautics and
Space Administration (NASA), Grant/Cooperative Agreement 80NSSC20K0555,
and a contract with the Juno mission, which is administered for NASA by the
Southwest Research Institute. C.L. was supported by the 51 Peg b Postdoctoral
Fellowship sponsored by the Heising-Simons Foundation.

1. C. J. Hansen et al., Junocam: Juno’s outreach camera. Space Sci. Rev. 213, 475–506

(2017).
2. A. Adriani et al., JIRAM, the Jovian infrared auroral mapper. Space Sci. Rev. 213,

393–446 (2017).
3. A. Adriani et al., Clusters of cyclones encircling Jupiter’s poles. Nature 555, 216–219

(2018).
4. D. Grassi et al., First estimate of wind fields in the Jupiter polar regions from JIRAM-

Juno images. J. Geophys. Res. Planets 123, 1511–1524 (2018).
5. F. Tabataba-Vakili et al., Long-term tracking of circumpolar cyclones on Jupiter from

polar observations with JunoCam. Icarus 335, 113405 (2020).
6. J. Chan, R. Williams, Analytical and numerical-studies of the beta-effect in tropical

cyclone motion. 1. Zero mean flow. J. Atmos. Sci. 44, 1257–1265 (1987).
7. L. Oruba, G. Lapeyre, G. Riviere, On the poleward motion of midlatitude cyclones in a

baroclinic meandering jet. J. Atmos. Sci. 70, 2629–2649 (2013).
8. U. A. Dyudina et al., Saturn’s south polar vortex compared to other large vortices in

the solar system. Icarus 202, 240–248 (2009).
9. M. E. O’Neill, K. A. Emanuel, G. R. Flierl, Polar vortex formation in giant-planet at-

mospheres dues to moist convection. Nat. Geosci. 8, 523-U118 (2015).
10. M. E. O’Neill, K. A. Emanuel, G. R. Flierl, Weak jets and strong cyclones: Shallow-water

modeling of giant planet polar caps. J. Atmos. Sci. 73, 1841–1855 (2016).
11. S. R. Brueshaber, K. M. Sayanagi, T. E. Dowling, Dynamical regimes of giant planet

polar vortices. Icarus 323, 46–61 (2019).
12. R. Mied, G. Lindemann, Propagation and evolution of cyclonic gulf-stream rings.

J. Phys. Oceanogr. 9, 1183–1206 (1979).
13. E. Chassignet, B. Cushmanroisin, On the influence of a lower layer on the propagation

of nonlinear oceanic eddies. J. Phys. Oceanogr. 21, 939–957 (1991).

14. K. S. Fine, A. C. Cass, W. G. Flynn, C. F. Driscoll, Relaxation of 2D turbulence to vortex

crystals. Phys. Rev. Lett. 75, 3277–3280 (1995).
15. X. Carton, On the merger of shielded vortices. Europhys. Lett. 18, 697–703

(1992).
16. G. Morikawa, E. Swenson, Interacting motion of rectilinear geostrophic vortices. Phys.

Fluids 14, 1058 (1971).
17. Z. Kizner, Stability of point-vortex multipoles revisited. Phys. Fluids 23, 064104

(2011).
18. G. F. Carnevale, R. C. Kloosterziel, G. J. F. Van Heijst, Propagation of barotropic vor-

tices over topography in a rotating tank. J. Fluid Mech. 233, 119–139 (1991).
19. D. B. Chelton, M. G. Schlax, R. M. Samelson, Global observations of nonlinear meso-

scale eddies. Prog. Oceanogr. 91, 167–216 (2011).
20. S. G. L. Smith, The motion of a non-isolated vortex on the beta-plane. J. Fluid Mech.

346, 149–179 (1997).
21. G. R. Flierl, Isolated eddy models in geophysics. Annu. Rev. Fluid Mech. 19, 493–530

(1987).
22. M. I. Jamaloodeen, P. K. Newton, The N-vortex problem on a rotating sphere. II.

Heterogeneous platonic solid equilibria. Proc. R. Soc. A Math. Phys. Eng. Sci. 462,

3277–3299 (2006).
23. W. Thomson, Floating magnets. Nature 18, 13–14 (1878).
24. G. Mertz, Stability of body-centered polygonal configurations of ideal vortices. Phys.

Fluids 21, 1092–1095 (1978).
25. H. Aref, Integrable, chaotic, and turbulent vortex motion in two-dimensional flows.

Annu. Rev. Fluid Mech. 15, 345–389 (1983).
26. G. Flierl, On the instability of geostrophic vortices. J. Fluid Mech. 197, 349–388

(1988).

Fig. 6. Regime diagram classifying the behavior of the cyclone patterns for
30 runs of the SW model. Each point is a 500-d simulation and reflects the
type of behavior for a particular value of Burger number Bu and steepness
parameter b. The contours give the initial distance from the center of each
cyclone to the annulus of minimum PV. The contour labels have units of rm,
which is the radius of maximum initial azimuthal velocity. The Rossby
number is between 0.2 and ∼0.23 to match observations.

24086 | www.pnas.org/cgi/doi/10.1073/pnas.2008440117 Li et al.

https://github.com/chengcli/2020.JupiterPolarVortex
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008440117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008440117


27. G. Vanheijst, R. Kloosterziel, C. Williams, Laboratory experiments on the tripolar
vortex in a rotating fluid. J. Fluid Mech. 225, 301–331 (1991).

28. X. Carton, G. Flierl, L. Polvani, The generation of tripoles from unstable axisymmetric
isolated vortex structures. Europhys. Lett. 9, 339–344 (1989).

29. D. A. Schecter, D. H. E. Dubin, K. S. Fine, C. F. Driscoll, Vortex crystals from 2D Euler
flow: Experiment and simulation. Phys. Fluids 11, 905–914 (1999).

30. J. Jimenez, A. Guegan, Spontaneous generation of vortex crystals from
forced two-dimensional homogeneous turbulence. Phys. Fluids 19, 085103
(2007).

31. J. R. Holton, G. Hakim, An Introduction to Dynamic Meteorology, (Academic Press, ed.
5, 2013).

32. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, (Cambridge University Press,
2006).

33. R. Achterberg, A. Ingersoll, A normal-mode approach to Jovian atmospheric dy-
namics. J. Atmos. Sci. 46, 2448–2462 (1989).

34. M. H. Wong, I. de Pater, X. Asay-Davis, P. S. Marcus, C. Y. Go, Vertical structure of
Jupiter’s Oval BA before and after it reddened: What changed? Icarus 215, 211–225
(2011).

35. H. B. Hammel et al., HST imaging of atmospheric phenomena created by the impact
of comet Shoemaker-Levy 9. Science 267, 1288–1296 (1995).

36. S. Chang, A numerical study of the interactions between 2 tropical cyclones. Mon.
Weather Rev. 111, 1806–1817 (1983).

37. M. Demaria, J. Chan, A numerical study of the interactions between 2 tropical cy-
clones. Mon. Weather Rev. 112, 1643–1645 (1984).

38. S.-E. Shin, J.-Y. Han, J.-J. Baik, On the critical separation distance of binary vortices in a
nondivergent barotropic atmosphere. J. Meteorol. Soc. Jpn. 84, 853–869 (2006).

39. X. Carton, B. Legras, The life-cycle of tripoles in 2-dimensional incompressible flows.
J. Fluid Mech. 267, 53–82 (1994).

40. A. Adriani et al., Two-year observations of the Jupiter polar regions by JIRAM on
board Juno. J. Geophys. Res. 125, e2019JE006098 (2020).

Li et al. PNAS | September 29, 2020 | vol. 117 | no. 39 | 24087

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S


